Πρόσφατα μου ζητήθηκε από κάποιον γνωστό μου να βρω τι υπάρχει σε DIY σχετικά με το θέμα ανιχνευτής χρυσού, για πειραματικούς του σκοπούς. Έτσι ξεκίνησα την αναζήτηση καθώς είναι ένα θέμα που δεν είχα ξανά ασχοληθεί ποτέ μου.
Σημ.: Ότι αναφέρεται παρακάτω είναι καθαρά ενημερωτικό και φυσικά προορίζεται για χομπίστες. Μην το χρησιμοποιήσετε για να κάνετε κάτι παράνομο.
Η παρακάτω κατασκευή αφορά ανίχνευση μετάλλων σε βάθος ή σε άλλα μέρη, όπως πχ σε κάποια ακτή. Αν ψάχνετε κάτι εύκολο και γρήγορο για απλή χρήση (σε μικρό βάθος, όπως πχ καλώδια σε τοίχο), δείτε και αυτήν την εφαρμογή για Android.
Υπάρχουν διαφορετικές κατηγορίες ανιχνευτών μετάλλων. Για να επιλέξεις κάποιο ανιχνευτή θα πρέπει να λάβεις υπόψιν σου το κόστος, την περιοχή που σκοπεύεις να καλύψεις και φυσικά το υλικό που θέλεις να "ψαρέψεις" από την γη.
Παρακάτω είναι τρεις από τους κυριότερους τύπους ανιχνευτών.
Οι ανιχνευτές τύπου VLF είναι οι πιο διαδεδομένοι ανιχνευτές μετάλλων και καλύπτουν διαφορετικούς τύπους μεταλλικά αντικείμενα και φυσικά διαφορετικά εδάφη. Είναι ωστόσο και οι πιο ασταθείς ανιχνευτές. Οι VLF ανιχνευτές κάνουν χρήση δύο πηνίων σε ένα. Το εξωτερικό πηνίο, το οποίο λειτουργεί σαν πομπός, όπου δημιουργεί ένα μαγνητικό πεδίο επάνω ή κάτω από το έδαφος. Αυτό το μαγνητικό πεδίο εύκολα διαταράσσετε από κάποιο θαμμένο υλικό, όπως πχ ένα νόμισμα, ένα χρυσαφικό ή ακόμη και ένα τενεκεδάκι αναψυκτικού. Το εσωτερικό πηνίο ανιχνεύει το μαγνητικό πεδίο που ήδη έχει δημιουργηθεί και αφού το ενισχύσει, το στέλνει πίσω στον μηχανισμό για να το αναλύσει ο χειριστής. Στην ουσία ο χειριστής ακούει τον ηχητικό τόνο και καταλαβαίνει το υλικό που έχει "χτυπήσει" ο ανιχνευτής. Φυσικά αυτού του τύπου οι συσκευές θέλουν καλό συντονισμό, ώστε να μην "χτυπάει" άχρηστα αντικείμενα, αλλά ποτέ δεν μπορείς να είσαι σίγουρος αν το συντόνισες καλά και ένας κακός συντονισμός μπορεί να σε κάνει να χάσεις κάποιο καλό κομμάτι.
Οι ανιχνευτές τύπου PI είναι από τους πιο διαδεδομένους ανιχνευτές ανάμεσα στους ερευνητές χρυσού, κυρίως επειδή έχουν την δυνατότητα να ανιχνεύσουν αντικείμενα τα οποία είναι θαμμένα βαθιά στο έδαφος, φιλτράροντας τον θόρυβο της μαύρης άμμου και του μαγνητίτη. Οι συγκεκριμένοι ανιχνευτές είναι ιδιαίτερα χρήσιμοι και σε όσους ψάχνουν σε παραλίες, αφού έχουν την δυνατότητα να απορρίπτουν τα ηλεκτρομαγνητικά κύματα που δημιουργούνται από το αλμυρό νερό, κάτι που μπερδεύει τους ανιχνευτές τύπου VLF. Ανιχνευτές τύπου PI χρησιμοποιούνται επίσης και στα αεροδρόμια. Ο τρόπος που δουλεύουν οι συγκεκριμένοι ανιχνευτές είναι απλός. Το πηνίο τους (συνήθως χρησιμοποιείται ένα μόνο πηνίο, το οποίο χρησιμεύει σαν πομπός και δέκτης, αλλά υπάρχουν και κατασκευές που έχουν μέχρι και τρία πηνία) δημιουργεί ένα μαγνητικό πεδίο, το οποίο διοχετεύεται στην γη. Όταν υπάρχει ένα αντικείμενο στο έδαφος, δημιουργείτε ένα αντίστοιχο πεδίο, το οποίο λαμβάνει το πηνίο και το στέλνει στον ελεγκτή, όπου το ελέγχει και χτυπάει αναλόγως.
Οι ανιχνευτές τύπου BFO είναι οι πιο βασικοί ανιχνευτές μετάλλων. Είναι ιδανικοί για όσους θέλουν να ξοδέψουν λίγα χρήματα, για τους χομπίστες και όσους θέλουν να δοκιμάσουν τα βασικά ή για όσους θέλουν απλώς έναν φτηνό ανιχνευτή μετάλλων. Οι ανιχνευτές αυτοί χρησιμοποιούν δύο πηνία, ένα μεγάλο και ένα μικρότερο. Ο ανιχνευτής δημιουργεί ραδιοκύμματα, τα οποία διακόπτονται όταν ένα αντικείμενο βρεθεί στο πεδίο τους.
Έτσι έπειτα από αναζήτηση και σχετικές συζητήσεις στο internet, κατέληξα σε κάτι που σου παρέχει τα υλικά και την πλακέτα έτοιμα, το Surf Pi 1.2, ο οποίος είναι Pulse induction (PI). Βέβαια βρήκα και σχέδια για πιο δυνατούς ανιχνευτές, που δεν έχω δοκιμάσει ακόμη γιατί δεν ήθελα να μπλέξω με διάτρητες πλακέτες σε αυτό το θέμα. Αν χρειαστεί στο μέλλον θα το κάνω, μιας και πρόκειται για έναν πολύ δυνατό ανιχνευτή με δυνατότητα αναζήτησης σε μεγάλο βάθος.
Σημ.: Τα links είναι από το dealextreme, ένα φτηνό online κατάστημα με δωρεάν μεταφορικά στην Ελλάδα (αν και παίρνει περίπου 2 εβδομάδες να έρθουν). Επίσης δεν είναι απαραίτητα, μπορείς δηλαδή να βάλεις κάτι άλλο στην θέση τους.
Η κατασκευή του ανιχνευτή είναι σχετικά απλή και δεν πρόκειται να σας μπερδέψει. Όλα τα υλικά φαίνονται εύκολα στην πλακέτα που θα μπουν και ακολουθώντας την σχετική λίστα, δεν θα σας πάρει πάνω από 40' για να το ολοκληρώσετε. Και τα ολοκληρωμένα και τα τρανζίστορ φαίνονται με την φορά που θα μπουν επάνω στην πλακέτα, ώστε να μην υπάρχει κάποια λάθος τοποθέτηση. Στο κιτ επίσης έρχονται και τα απαραίτητα ποτενσιόμετρα, για τις απαραίτητες ρυθμίσεις, καθώς επίσης και οι υποδοχείς των καλωδίων, ώστε να μην κολλάτε καλώδια επάνω στην πλακέτα.
Το κιτ του Surf PI 1.2, όπως θα δείτε και στην παραπάνω φωτογραφία, έρχεται με ότι θα χρειαστείτε για να τον κάνετε να δουλέψει. Ωστόσο θα χρειαστείτε ένα κουτί για την πλακέτα, τροφοδοσία (πχ μπαταρίες), κάποιο κοντάρι που θα κρατάει το πηνίο σε απόσταση (συνήθως έναν πλαστικό σωλήνα), καθώς επίσης και την κατασκευή του πηνίου, κάτι που είναι το κυριότερο κομμάτι της κατασκευής μαζί με την ρύθμιση του ανιχνευτή.
Το πηνίο είναι ίσως το κρισιμότερο θέμα σε τέτοιους ανιχνευτές. Πολλές οι συζητήσεις και πολλές οι δοκιμές. Ο πιο απλός τρόπος είναι να πάρετε ένα σύρμα περιέλιξης μοτέρ και να το τυλίξετε σε κάτι πλαστικό, όπως πχ σε καπάκι από θήκη άγραφων DVDs. Εγώ "ξήλωσα" από παλιό μοτέρ (όχι καμένο, γιατί τότε το βάψιμο που έχει το σύρμα θα έχει φύγει και δεν θα κάνει για πηνίο μετά) και το έβαλα σε καρούλι σύρματος ηλεκτροσυγκόλλησης για να το τυλίξω. Το πηνίο που δοκίμασα είχε σαν αντίσταση 3.3 Ohm, αλλά όπως έχω διαβάσει οι αντιστάσεις "παίζουν" από 1,4 μέχρι 4 Ohm.
Όταν τελειώσουμε με τις κολλήσεις και το πηνίο, θα πρέπει να ρυθμίσουμε τον ανιχνευτή ώστε να λάβουμε τα μέγιστα από αυτόν. Για να ρυθμίσουμε τον ανιχνευτή, θα χρειαστούμε ένα πολύμετρο, ψηφιακό κατά προτίμηση και ένα ίσιο κατσαβίδι.
Προτού ξεκινήσουμε, θα πρέπει να δούμε πως μπορεί να γίνει η σύνδεση του πηνίου. Αν την πλακέτα του ανιχνευτή πρόκειται να την βάλετε σε κάποιο κουτί, όπως έκανα εγώ στην παραπάνω εικόνα, τότε το καλώδιο που θα συνδέει το βύσμα που θα δέχεται το πηνίο θα πρέπει να είναι τύπου coaxial, ώστε να είναι θωρακισμένο. Αυτό μπορεί να γίνει με κάποιο καλώδιο από RCA ή από κάποιο παλιό USB. Το αρνητικό (-) είναι το γυμνό καλώδιο, το οποίο και πρέπει να συνδεθεί στην γείωση (δηλαδή να μην το απορρίψετε και βάλετε κάποια άλλα καλώδια, αν περιέχει πάνω από ένα το καλώδιο που θα χρησιμοποιήσετε), ώστε να κάνει την δουλειά του. Σε αντίθετη περίπτωση, αν γίνει χρήση κάποιου απλού καλωδίου, τότε κάθε φορά που θα πλησιάζετε την πλακέτα ή το κουτί, θα επηρεάζετε τον ανιχνευτή.
Τροφοδοτήστε με ρεύμα τον ανιχνευτή, ώστε να ενεργοποιηθεί. Αν όλα πήγαν καλά, θα ακούσετε έναν ήχο, ο οποίος θα αλλάζει όσο γυρίζετε τα δύο μεγάλα ποτενσιόμετρα. Γυρίστε τα, ως ότου να ακούτε έναν σταθερό ήχο, ελάχιστα ακουστό.
Τώρα θα πρέπει να ρυθμίσουμε το ποτενσιόμετρο offset (είναι το P1 στην πλακέτα, γράφει OFFSET δίπλα του). Βάλτε το (-) του πολύμετρου στην γείωση (δείτε στην παρακάτω εικόνα) και το (+) στο pin 6 του NE5534P ολοκληρωμένου (U2 στην πλακέτα).
Λογικά στο πολύμετρο θα δείξει κάποια τάση, θετική ή αρνητική. Γυρίστε την βίδα του ποτενσιόμετρου ως ότου το πολύμετρο δείξει 0v (μηδέν).
Στην παρακάτω εικόνα βλέπουμε τα δύο ποτενσιόμετρα, το ολοκληρομένο NE5534P με το pin 6 σε κύκλο και το σημείο (κάτω αριστερά) όπου μπορείτε να βάλετε το (-) του πολύμετρου για να ρυθμίσετε το ποτενσιόμετρο offset.
Όταν τελειώσουμε, σειρά έχει το ποτενσιόμετρο delay. Αυτό είναι πιο εύκολο να ρυθμιστεί. Πάρτε κάποιο χρυσό νόμισμα και κουνήστε το επάνω από το πηνίο, γυρίζοντας παράλληλα το ποτενσιόμετρο. Με αυτόν τον τρόπο μπορείτε να το ρυθμίσετε ως ότου να λάβετε την μεγαλύτερη απόσταση από το πηνίο.
Στα παρακάτω video βλέπουμε τον ανιχνευτή σε λειτουργία και τον διαφορετικό ήχο σε κάθε υλικό
Μία από τις χρήσης του ανιχνευτή